ZWP500 Z-Wave Module Programmer and Tester

Merrimack, NH February 26, 2018 – Express Controls LLC announces the release of the ZWP500 Z-Wave 500 series programmer and tester. The ZWP500 is specifically designed to efficiently program the 500 series Z-Wave modules and chips from Sigma Designs. “The ZWP500 is the first 500 series programmer with full support for printing of the SmartStart QRcode which is now required for all Z-Wave certified devices” said Z-Wave expert and Express Controls CEO Eric Ryherd.  Utilizing the popular and powerful Raspberry Pi single board computer means the full capabilities of a high performance processor and an open platform can be utilized for programming and testing Z-Wave based products. The feature rich Raspian Linux operating system means the ZWP500 can be programmed in any popular language such as C, C++ or Python. The system is an open platform easily customized by the user or the experts at Express Controls can quickly develop a solution that exactly meets the needs of your product.



  • Sigma Designs 500 Series FLASH Programmer
    • Standard Sigma 12 pin programming header
      • SPI interface for programming
      • UART interface for debug
    • NVR and external NVM programming & test
    • 1ppm Crystal RF Calibration
    • SmartStart QRCode generation & printingqrPack
    • Fanless protective enclosure
  • Production Test Platform
    • Customizable Python interface
    • Scanner interface for serial number or DSK
    • Label printer interface for SmartStart DSK
    • Camera interface for LCD screen testing
    • Z-Wave ZM5202 Module onboard
    • Programmable RF Attenuator with SMA
  • Python API
    • Customizable Programming API or GUI
    • Sample test scripts for production testing
  • Programmable Power Supply
    • +2.0V to +4.5V 300mA
  • Raspberry Pi based controller
    • 1.2GHz Quad ARM CPU running Linux
    • 1GB RAM – 8+GB FLASH microSD
    • Ethernet, WiFi, HDMI and USB connectivity
    • Control locally or remotely via VNC


The ZWP500 is a production programmer for Z-Wave 500 series wireless RF modules. The ZWP500 programs Z-Wave modules at their maximum programming speed bringing the typical programming time down under four seconds compared to nearly 30 seconds with competing products. RF calibration is performed using the high accuracy 1ppm on-board crystal. A fanless enclosure means the ZWP500 can be deployed on the factory floor without special packaging or custom enclosures. The ZWP500 is a complete, high speed, robust production platform that can be customized to meet your exact requirements. Customization services are available from the Express Controls team of experts.

In addition to being a fast production programmer, the ZWP500 is an ideal platform for testing Z-Wave devices. Product testing on the factory floor to ensure every device is free of manufacturing defects requires an accurate, fast and robust system. The ZWP500 utilizes the Linux based Raspberry Pi model 3 (RPi3) Quad Arm A7 processor which is then augmented with the precise timing generators of a Cypress PSoC microcontroller and the RF capabilities of the on-board Z-Wave module. A programmable power supply with current measurement capabilities enables rapid testing to ensure that the Device-Under-Test (DUT) is free from gross production failures like power to ground shorts or missing power components. Either Python or C programming languages can be used to develop a customized test program to fully verify every electronic component of the DUT. Express Controls can write the test program for you or your team can develop it using the sample code provided with the ZWP500 as a guide.

The ZWP500 can be used for software validation to verify there are no bugs in each release of firmware. The full power of high level programming languages like Python or C can be used to test every button press and Z-Wave command class with each firmware revision. Push buttons can be activated with millisecond precision. DACs can generate specific voltages or waveforms to trigger specific conditions. The power supply voltage can be varied to trigger low-battery conditions as well as measure current to ensure the DUT battery lifetime will meet your specification. LCD screens can be checked against reference images to verify every screen reacts properly to every button press. The power of the RPi3 is at your disposal using the most advanced programming languages to fully test every aspect of your product with every release.

Typical Programming & Test System

ZWP500SampleSystemA typical ZWP500 based system is shown here. A custom designed PCB utilizing spring loaded pogo posts is used to make contact with the Device Under Test (DUT). This board is then mounted in a 3D printed jig which clamps the DUT in place during programming and testing. A low-cost Zebra thermal printer is used to print the SmartStart QRCode at the same instant the DUT is programmed with the 32 byte encryption keys to ensure the proper QRCode is matched with the DUT.

Contact Express Controls for details and pricing.

Express Controls

Express Controls provides expert consulting services for the design and manufacture of wireless Internet of Things (IoT) products for Z-Wave product development teams. An early adopter, Express Controls has been been developing IoT products using Z-Wave protocol since 2003 and the early 100 series RF transceivers.  Currently we are developing Z-Wave products using the latest Sigma Designs fifth generation 500 series RF modules which enable us to quickly prototype whatever IoT device you can imagine.  We have resources available for PCB design and layout as well as industrial design and 3D printing to help visualize the entire IoT product quickly.   With well over a decade of experience learning the nuances of the Z-Wave protocol, we are here to help you get your Z-Wave product to market quickly as well as provide expertise for a variety of other IoT and/or Z-Wave challenges you may be experiencing!


Eric Ryherd – CEO and Z-Wave Expert Consultant – +1 (603) 889-4841 –