Tag Archives: C Coding

Z-Wave Watchdog Timer Best Practices

WatchDogVirtually all embedded systems must run 24 x 7 x 365 x many many years without ever being rebooted. Since there is no one there to “press the reset button” if the device fails, the watchdog timer is there to do just that. The 500 series Z-Wave chips from Silicon Labs have a watchdog timer and the example code provides a very minimal use of the watchdog timer. However, the minimal use in the example code is not sufficient to provide a robust watchdog for embedded Z-Wave devices. This post explains some rules and methods to code a robust watchdog timer.

Long time embedded expert Jack Ganssle has a great article on Watchdog timers. He describes the use of a watchdog timer on the Clementine spacecraft where a fault in the system caused the spacecraft to dump virtually of its fuel resulting in the loss of the mission. The lead software engineer had wanted a watchdog but the designers decided not to include it. Jacks example shows how important it is to spend at least some time coding a robust watchdog for our IoT devices. While our devices aren’t controlling multi-million dollar spacecraft, we are coding light switches that are hardwired into the wall and cannot be easily rebooted. Try telling the customer to go into the basement and toggle the power to his entire house to reboot the light switches!

What is a Watchdog?

A watchdog timer is a timer that runs constantly. Typically a complex combination of events resets (or “kicks”) the watchdog timer every now and then, usually every few milliseconds. If the combination of events ever gets stuck, the timer will continue to run. If the watchdog timer “times out”, the system is reset – basically the reset button is pushed! Your embedded system reboots and keeps on running. Generally no one even realizes it has rebooted (I’ll discuss that problem in more detail shortly).

WatchdogTimerThis diagram shows the Watchdog timers value which is constantly counting up. Every time the Watchdog is “kicked”, the counter is reset to zero. Somewhere in your code the ZW_WatchDogKick() routine is called which resets the watchdog timer. Sometimes this reset condition happens on a nice regular basis, sometimes it happens at varying times as shown by the level of the timer. The key is the timeout threshold has to be longer than any normal operating condition. If a fault condition occurs, the timer keeps on counting up until the threshold is reached and then the system is reset. When the watchdog timer fires, the Z-Wave chip goes thru a full reset just as if power had been removed and reapplied. Your embedded system is back up and running as if nothing had happened.

SiLabs Sample Code = Minimal Watchdog

The SiLabs sample code has the following implementation of the watchdog:

BYTE ApplicationInitSW(ZW_NVM_STATUS nvmStatus) {

void ApplicationPoll(void){

The sample code has the good implementation practice of putting the Watchdog code inside #defines so it can be easily enabled/disabled. Unfortunately it blindly kicks the dog every ApplicationPoll without checking any other conditions. ApplicationPoll is called roughly every few hundred microseconds and a lot of fault conditions can exist and ApplicationPoll will still be called. With this implementation the only way the watchdog is going to fire is if there is a catastrophic failure and ApplicationPoll is no longer being called. While this implementation is better than nothing, it won’t reset the system in many cases where the device has become unresponsive. This is where you come in, you have to add more code to the watchdog algorithm. It may be easy to just use what SiLabs provides, but for a robust product you really need to spend some time adding your own conditions to the watchdog algorithm.

A Better Watch Dog Example

Writing good watchdog code requires some significant thought and testing. The possible sources of failure need to be discussed with members of the team and with other Z-Wave developers who are fighting the same fight (thus the need for this blog). I can provide a few guidelines to include in your analysis but this is not a complete solution. Only you know all the possible failure modes of your product and that requires some serious thought and analysis.

Mutex Gets Stuck

The most common failure I have seen is the fact that the SiLabs provided Application Framework (AF) mutex can get stuck. When the mutex is stuck, it most often results in the device still able to receive Z-Wave traffic but often can’t respond. If the device is power cycled, then it returns to full operation. So often this failure goes unnoticed both in testing and in actual use.

What is the mutex you ask? The mutex is a simple flag in the AF that prevents the code from overwriting the Send Buffer while a message is currently being sent over the radio. When a GET command comes in, the AF will call a command class handler to handle the GET and build a REPORT frame in memory. When ready to send the frame, the AF will call pTxBuf=GetResponseBuffer() to get a buffer for the radio to send. There is only one buffer so if the buffer is already in use, you get a NULL pointer back and will have to wait and send the frame later.  This in general works fine as long as frames don’t come in too fast. But in a large network with lots of repeated and re-routed frames you will occasionally get a bunch of GETs quickly and it is possible for the REPORTs to get cross wired and end up locking up the mutex for a frame that will never be sent. If the code then doesn’t properly release the buffer, the mutex is stuck. The Application Framework code is known to lock the mutex occasionally so you must code around this problem. The easiest solution to this rare event is to ensure the watchdog is watching the mutex and simply reboot if it gets stuck for too long.

My solution is to have a counter that counts up once per second in ApplicationPoll anytime ActiveJobs() is true (in SDK 6.81.xx its now called ZAF_mutex_isActive()). ActiveJobs is true anytime a buffer is in use and false when all the buffers are free. There are actually two buffers, one for response frames (REPORTs sent as a result of a GET) and a second buffer for request frames (unsolicited notifications).

Application Specific Reasons

Beyond the mutex you must think long and hard about application specific failure conditions. The most obvious is that the device has not received or sent a frame in 25 hours. Most hubs will poll a device at least a couple of times per day to make sure it is still alive. So if there has been no traffic in a day, maybe something is stuck and a reboot is in order. Plus if nothing has happened in a day then probably no one will notice the reboot (which only takes 1.5 seconds). You do have to be careful that some other part of the application isn’t impacted as a result of the reboot. For example, if you are a light switch and by default you turn the light off on a reboot, then people will be really annoyed if the light randomly turns off because your hub hasn’t polled it in day. There are lots of potential checks you can make here but every application will have different requirements so you will have to think hard about all the possible conditions for your specific case.

Sample good watchdog:

E_APPLICATION_STATE ApplicationPoll( E_PROTOCOL_STATE bProtocolState ) {
if (ActiveJobs()) {              // Mutex buffer is busy
    if (OneSecondTimer) ActiveJobsCounter++;  // Once/sec increment
} else {
    ActiveJobsCounter=0;         // When buffer is free clear counter
if ((ActiveJobsCounter<30) &&       // Mutex isn't stuck 
    (LastCommsHours<25) &&          // Got a frame in the last 24 hrs
    ApplicationSpecificReasons) {   // Other reasons
    ZW_WatchDogKick();              // Everything is OK so reset WDOG

In the example code above we do have a major issue in that if the counters stop counting for some reason, the watchdog will never fire! But that’s easy to check for in ApplicationPoll and if ApplicationPoll itself isn’t running then the WatchDog is no longer being kicked so it will reset.

Doesn’t Work If Not Tested

The old coding adage (proven totally true by me many many times) goes “If the code hasn’t been tested, it doesn’t work”. Same thing applies to your Watchdog code. So how do you test the watchdog? The first thing to do is to log the number of times the watchdog has triggered. This has to be stored in NVM since RAM will be lost when you reboot. Fortunately ApplicationInitHW is called with the bWakeupReason parameter which lets you know the watchdog fired when equal to ZW_WAKEUP_WATCHDOG. Note that usually ApplicationInitHW just stores the bWakeupReason and later in ApplicationInitSW we check it as the NVM isn’t available in InitHW.

ApplicationInitSW(...) {
if (wakeupReason==ZW_WAKEUP_WATCHDOG) { // Increment WDOG counter with max 255
    if (i<255) MemoryPutByte((WORD)&EEOFFSET_NumberWatchDogResets_far, i+1);

Use a Configuration Command Class parameter to read or update this value for testing purposes. I also like to put in a small block of code wrapped in #ifdef WATCHDOG_TESTING_ENABLED that upon receiving a BASIC_SET with a value of 0xDE (not a valid value) calls GetResponseBuffer() which locks up the mutex and in 30 seconds the chip should reboot. If not, then you have a bug in the watchdog code! You can test all the branches in your watchdog code with various values of a BASIC_SET.

When to Enable Watchdog

Perhaps a better question is when NOT to enable the watchdog since ALL production builds absolutely must have the watchdog enabled! My recommendation is to disable the watchdog during development. You want the chip to lock up if you have a bug. The watchdog is really good at masking major bugs since things just keep on working. If the device locks up, then you know something is wrong and you need to chase it down. If you power cycle and the device is fine again, IT IS NOT FINE! You have a bug in your code! During production testing I usually turn the watchdog back on but I also have the testing scripts check the watchdog counter and if it increments then the test fails.

Watchdog Best Practices for Z-Wave Developers

  1. Disable Watchdog during development using #defines
  2. Only kick the watchdog when everything is idle
    1. Kicking every ApplicationPoll is INSUFFICIENT
    2. Check the ActiveJobs() being stuck (aka Mutex)
    3. Check other conditions within your product
  3. Check that the RF has received something every X minutes or hours
  4. Have a way to test the Watchdog during development
  5. Store the number of Watchdog resets in NVM and retrieve them via a configuration parameter


8051 8-bit CPU Coding Tricks & Tips

The death of the 8-bit CPU has been prognosticated for over a decade but these old tiny workhorses keep going and going and going. Z-Wave is currently based on the venerable Intel 8051 CPU but we’re about to get an upgrade to a 32-bit ARM CPU via the 700 series which is due out later this year. In this posting I’ll give a few tips on coding in C for the 8051 to typically improve speed of execution.

I’ve been writing code for 8-bit CPUs since the 1980s and I designed a few in the 1990s. I also designed a couple of 32-bit RISC CPUs in the 1990s and early 2000s. I often had to squeeze the code just a little harder to get an operation to happen just fast enough to meet a system requirement. This meant that I either had to code in assembly or often just coding C in a slightly different way would convince the compiler to generate the most optimal assembly code for me.

8-bit CPU Architecture

I could go thru a long discussion of the block diagram of the 8051 CPU but instead I’ll just cut to the  chase – the 8051 is not at all “C friendly”. The 8051 was architected back in the bad ol’ days of assembly programming – especially for embedded systems where resources were in very short supply (think 1K ROM and 64 bytes of RAM). Thus the architecture has all sorts of funny things that a C compiler can’t take advantage of efficiently. The PSR flags, the D pointer, the single accumulator, memory mapped registers and the SFR registers are all parts of the 8051 that make it special but unfortunately are just not efficient in C. The folks at Keil have worked really hard to make their compiler as efficient as possible and to make access to these non-C hardware resources available without too much effort. But at the end of the day, a C compiler really wants a nice simple block of 32-bit registers to perform integer arithmetic on and a simple flat memory – in other words, a RISC CPU.

In the Z-Wave world, the 8051 in the 500 series chips is a 32 MHz 8051 with 128K bytes of FLASH and 16K bytes of RAM. “But wait” you say, “the 8051 is an 8-bit CPU with a 16-bit Program Counter, how can it address 128K bytes?”. The answer is Bank Switching which is just plain crazy but I won’t get onto that soapbox in this posting. The Z-Wave code from Silicon Labs is delivered as pre-compiled C libraries that the application developer links into their code. The application code is written in C and the Keil compiler does a fine job of squeezing a reasonable amount of code into the tiny 8051. Fortunately in IoT, the task to be performed is usually pretty simple – turn a light on or off by activating a relay connected to a GPIO so we don’t need a multi-Gigahertz CPU with gobs of RAM.

The Silicon Labs SDK comes with a number of sample applications and a bunch of “helper” routines all written in C. Thus, a Z-Wave application can generally be written completely in C, compiled using the Keil compiler and it’ll generally squeeze into the limited code space as long as you don’t try to do too much on this little CPU. But it seems there are always some little things that I just need to do a little faster. The following tips are just a few of the simple tricks I’ve learned from decades of embedded coding.

The Fastest 8051 Loop

What is the fastest 8051 loop you can execute in C?

The most common loop is a simple FOR loop:

for (iter=0;iter<16;iter++) {

Which is easy to read and does the job just fine – if we don’t need to do it very fast. Often the innermost loop is executed a lot and squeezing just a few instructions out of the code will significantly improve the performance of the routine.

The for loop above compiles into the following assembly code:

B02:0xA04D E4 CLR A
B02:0xA04E FF MOV R7,A
B02:0xA04F 0F INC R7                    ; TOP OF LOOP
B02:0xA050 EF MOV A,R7
B02:0xA051 B410FB CJNE A,#demodState(0x10),B02:A04F

Which as you can see is quite a few instructions and even longer when you consider that each instruction is at least 4 CPU clocks. The Compare and Jump if Not Equal (CJNE) is a 3 byte instruction which requires many clock cycles to execute. If we can squeeze a few instructions out of the loop then it will run much faster. Obviously we could code in assembly but this exercise is to show that HOW you code in C can make a big difference in the performance. An alternative coding of the for loop above is:

do {
} while (--iter);

With this slight change in the coding style the while loop turns into a single byte DJNZ opcode as shown below so this is the fastest and most efficient looping structure when targeting the 8051.

B02:0xA055 7F10 MOV R7,#demodState(0x10)
B02:0xA057 DFFE DJNZ R7,B02:A057         ; single instruction loop

The real trick to improving the performance of your code is to see what assembly instructions the code compiles into.

How to See What Your C Code Turns Into

You can’t improve the performance of your code unless you can measure what the performance is and where all the time is being spent. A classic method of measuring the performance is to set a GPIO pin high or low during specific routines. Then use an oscilloscope to observe how long the routine takes. Other options involve printing out markers out a UART or using a hardware timer to measure the duration of a routine.

KeilDebug1A simple method to observe the instructions our C code generates for our little 8051 CPU is to use the simulator built into the Keil C compiler. By default the Keil IDE does not have a simulator when using the Silicon Labs sample projects so you have to assign one. Right click on the project then select “options” then click on the “Debug” tab. Then enter “s8051” into the CPU DLL box as shown here. You can now click on Debug->Start/Stop Debug Session or press <CTL>F5. This will enter the Keil Simulator for the 8051. One thing to understand is that this simulator does NOT understand the bank switching of the Silicon Labs version of the 8051 used in the 500 series. Unfortunately you can’t debug code much using this simulator as any bank switching doesn’t work. But it will work well enough to debug small snippets of code and of course to see what you code turns into.

KeilDebug2Once the debugger opens in the IDE, click on the line of code you are interested in and the Disassembly window (use View->Disassembly if its not visible) will take you right to the line of code you are interested in as shown here. Note that the C source code is mixed in as comments in the assembly code. This helps guide you to match the C code to the assembly code which can be a little convoluted depending on the optimization the compiler has applied. You can see here that the Do-While has turned into our desired DJNZ single instruction loop.

Don’t rely strictly on the instruction count to guide your C coding style. One slow-down I often see in the Silicon Labs code is they call a subroutine, that calls a subroutine, that calls (several more) subroutines which finally just returns a value. While this may be structured C coding it is very slow in an 8051. Each subroutine call pushes and pops a number of registers and parameters on the stack and each of those takes several clock cycles to perform. Ideally a C macro is used to specify a value or a register which becomes just a single instruction fetch of the value from a register or memory instead of all this pushing and popping.

Unrolling Loops

Another easy speedup in C is to unroll short loops. A classic situation for unrolling loops is when emulating a serial protocol like I2C with a GPIO. Since the loop is typically only 8 passes you can often significantly improve performance by unrolling the loop – often taking the I2C bit rate from under 10Kbps to nearly 100Kbps.

for (bitnum=0x80; bitnum!=0;bitnum>>1) {
    I2C_SEND_BIT(data & bitnum);  // macro to set SDA then toggle SCL

When unrolled turns into:

    I2C_SEND_BIT(data & 0x80);
    I2C_SEND_BIT(data & 0x40);
    I2C_SEND_BIT(data & 0x20);
    I2C_SEND_BIT(data & 0x10);
    I2C_SEND_BIT(data & 0x08);
    I2C_SEND_BIT(data & 0x04);
    I2C_SEND_BIT(data & 0x02);
    I2C_SEND_BIT(data & 0x01);

Which works well for short fixed length loops but obviously won’t work in every case. The slow down with the FOR loop involves reloading the accumulator and the D pointer with various constants and the iteration value. The inline version doesn’t have any of these nor are there any delays from looping. This technique also works well on 32-bit RISC processors.


There are a lot more tricks when coding for small 8-bit CPUs. But I’m hoping I won’t have to bother with them for much longer and the dominance of the 32-bit CPU will finally crush the 8-bit out of existence. The price of silicon continues to drop and 32-bit CPUs are often as cheap or even cheaper than these ancient 8-bit boat anchors. The modern CPUs also come with advanced debuggers unlike the 8051 which has… wait for it… printf or worse yet simply toggling an IO. Ugh.