All posts by DrZWave

EU Z-Wave Summit 2018 – Amsterdam

2018EUSummit1IoT Device Testing Best Practices by Eric Ryherd

Click  HERE to see the entire presentation including my notes. If you are a Z-Wave Alliance member a video of the presentation is usually posted on the members only section of their web site. The main takeaways from my presentation are:

  • Have a written test plan
  • Use the Compliance Test Tool (CTT) as the START of your test plan
  • Vary the environmental conditions during testing
  • Test using real world applications
  • Test using complex Z-Wave networks with routing and marginal RF links
  • Test with other hubs and devices
  • Automate testing using tools like the ZWP500
  • Code firmware with failure in mind
  • Utilize the WatchDog timer built into the Z-Wave chip

The presentation goes into detail on each of these topics so I won’t duplicate the information here. I also go thru several failures of devices I’ve been working with. You learn more from failures than you do when everything just works. This is the same presentation that gave last fall in the US summit.

Z-Wave Summit Notes

2018EUSummit4There were nearly 200 attendees at the Summit – a significant increase over last year. One of the main purposes of the summit is to learn what’s new in Z-Wave and what Silicon Labs is planning for the future. The most important news at this year’s summit is the 700 series which was announced at CES in January. Unfortunately we will have to wait a bit longer to get our hands on the chips due to the purchase of Sigma Designs by Silicon Labs. The 700 series chip has been updated to match the other SiLabs microcontrollers so the silicon has been delayed a bit but they expect to ship parts before the end of 2018. Z-Wave will benefit tremendously from a real CPU instead of the very resource constrained 8051 in the 500 series. The feature I can’t wait for is the hardware debugger. We’ll finally be able to single step our C code and inspect variables and set breakpoints. No more PRINTF! Yeah!

Time for hubs to switch to Z/IP and ZWare

The very clear message of the summit is that Z/IP and ZWare are now mature and is THE gateway interface going forward. My initial brief trials with Z/IP were frustrating with poor documentation and the software really wasn’t quite ready. But with the recent release of 2.81 it would appear it is ready for prime time and I’ll have to give it another look. I was surprised by the number of gateway developers that were at the summit and most were already using at least Z/IP and many also using the ZWare abstraction layer. The SerialAPI is the interface most gateway developers have used in the past but this is a very low-level interface. There are many nuances of handling sleeping devices and the complexities of the encrypted security encapsulation when using such a low-level interface. This is where Z/IP comes in which handles nearly all of these lower level details for you. Z/IP is planned to be the only supported interface in the near future and certification costs will be significantly higher if it is not used. ZWare adds another layer on top of the Z/IP which provides much easier C++ objects relieving the developer from having to learn the details of each Z-Wave command class. See the Z-Wave Public web site for more details.

The internal Z-Wave Technical Site (ZTS) is now also available to everyone but you still have to click on “accept terms” to gain access. However the access is granted immediately so you don’t have to wait for “approval”. So anyone wanting to learn about the inner guts of Z-Wave can now do so without buying a DevKit.

Summit isn’t all work, work, work

Maker:L,Date:2017-8-26,Ver:5,Lens:Kan03,Act:Kan02,E-YThe Summit isn’t all work all day even though the days are long and filled with lots of technical information. This summit had an evening at the Rosarium park. The park has room for team building games like a maze run, archery, volleyball among other games and of course lots of food and drink. It was a nice ice breaker and a good way to get to know your fellow Z-Wave developers. The networking opportunities are a very large part of the value of attending the summit in person. The evening highlight was a performance by the “Interoperables” Z-Wave Rock and Roll band lead by Alliance chairman Mitch Klein.

Z-Wave Saved My Fathers Life

My father is a cantankerous curmudgeon but at 89 years old he deserves to be a little crusty. In his infinite wisdom at the age of 79 he decided to move away from his family here in New England and purchased a home in warm sunny Florida. He was happy he no longer had to freeze in the cold of winter but I was unhappy because now he was 2,000 miles away and I worried something might happen to him. If someone broke in or if he fell no one would know potentially for weeks. To ease my worries I applied my technical expertise and deployed an inexpensive Z-Wave based system to keep an eye on him.

HomeSeer to the Rescue

HomeseerZeeS2

HomeSeer sells a Raspberry Pi based Home Automation system with a built-in Z-Wave interface called the Zee S2. This small box needs only 6 Watts of power but contains a complete Linux computer that can serve web pages and runs the HomeSeer HS3 application. My initial system was just the HomesSeer Zee S2 ($199) and two Express Controls EZMultiPli Multi-sensors ($99) for a total cost of $300 for my peace of mind.  No monthly charges, no “monitoring fees” or any other costs so this is indeed a low-cost solution. All of the Z-Wave devices just plug in with no wiring, no batteries and everything pretty much plug-and-play. In less than an hour the system went from the box to fully installed and the web interface up and running via my phone or computer.

The HomeSeer system is accessible 24x7x365 via their portal at myhs.homeseer.com. No complex router tunneling or anything like that – just plug the Zee S2 Ethernet cord into HS3the router and then login to it from anywhere in the world. The system is secure and password protected. The HS3 application serves web pages with a status of every Z-Wave device. The HS3 application runs on the Raspberry Pi so all processing is local which means temporary Internet connectivity outages are no problem.

The HS3 user interface shown here is utilitarian which is fine for this application. HomeSeer has an easy to use IF-THEN “events” page which is quite powerful. The HS3 system constantly monitors the motion sensors and depending on the time of day sends me a text anytime there hasn’t been motion detected in the house for more than 5 hours. I placed a motion sensor next to his bed and another in the kitchen. Since he typically would get up several times each night, my 5 hour time limit rarely false-triggered. The trigger was extended longer during the day since he would be up and around the house and not in the bedroom for more than 8 hours at a time.

Nothing is Perfect

When I first put the system together, it seemed to work reliably. However the Zee S2 unit was installed at the far end of the house near the cable box. The kitchen motion

ezmultipli200
Express Controls EZmultiPli Motion Sensor

sensor was about 25′ away and the bedroom one was another 20′ away and had to pass thru several walls, the HVAC system and a bathroom. With only 3 nodes in the Z-Wave network I violated one of the key rules of a mesh network – always have more than two routes to every device. In this case I had exactly one route to each device so I didn’t have a mesh and the result was a number of false triggers because the bedroom motion sensor occasionally couldn’t reach all the way back to the Zee S2.

I was frustrated because I left what I thought was a working system but soon turned out to be unreliable. Now I was 2000 miles away and had to suffer with this system for nearly a year before my next visit to Florida. The solution was to add a few lamp modules and another multi-sensor so now I had 7 nodes with several routes to all nodes. Now the system was reliable and did not false trigger. I added an event that automatically turned on a lamp in the family room whenever motion was detected. My father really liked this feature as he always had light as soon as he entered and it would automatically turn off when he had left the room.

I thought things were pretty robust at this point but my next Achilles heel turned up rather quickly. Something caused the Raspberry Pi to crash. I couldn’t log into it and it was no longer sending me the daily emails telling me what time my father had gotten up in the morning. After nearly 2 months the system just suddenly started sending me the daily emails again. Apparently a power outage had in effect rebooted the HomeSeer system. On my next visit I put the entire system on a power strip that my father could reach so he could reset the system. I still want a power strip that has a watchdog timer function and if it doesn’t get some sort of “ping” every hour or so, it reboots everything downstream.

He Takes a Fall

At 2:39am one morning in mid-November 2017, my father fell in his bedroom. He was unable to get up. He was unable to call for help. My HomeSeer system sent me a text at 7:39am stating he had not gotten up. That seemed like an odd time for him to not get up so I tried to call him. After several calls with no answer and checking the HomeSeer system to see that there has been no changes since 2:39am I became concerned. I had the Sheriff stop by and check on him and it turns out he was on the floor, awake but unable to move. The EMTs were called and he was taken to the hospital. In just 5 hours he was already dehydrated and would have slowly died a painful death in a day or so if my system had not been in place. The Z-Wave system saved my fathers life.

Looking back on it now, I had noticed that his morning schedule had started to vary significantly from day to day. For years he had been getting up at a pretty predictable time of around 10am. But in the months prior to his fall, his schedule had started to vary from 8am to as late as 1pm in the afternoon. When we talked on the phone he said he was fine but clearly he was struggling. He enjoyed being warm in Florida and he was happy and I was confident that my Z-Wave system would alert me to any major problems which it did.

Z-Wave Multi-sensor Version 2.0 with SmartStart – Batteries not Required

Merrimack, NH March 19, 2018 – Express Controls LLC announces the release of Version 2.0 of the EZMultiPli three-in-one multi-sensor and Z-Wave repeater. The Z-Wave Plus certified device is one of the first available SmartStart devices on the market and is available for purchase now on Amazon.

EZMFrontAnimFeatures

  • Motion Sensor
  • Temperature Sensor
  • Light Sensor
  • Color Indicator Night Light
  • Z-Wave® Range extender
  • Wall Powered – No Batteries, No wires
  • Screw tab for secure installation
  • SmartStart enabled

The new features for the 2.0 version are the addition of a screw tab for secure mounting and SmartStart. The tab on the enclosure enables secure mounting in either a standard outlet or a decorator outlet common with GFCI circuits used in kitchens and baths. The tab ensures children, elders, cleaners or maintenance personnel can’t easily remove the sensor. Secure mounting means the Z-Wave network is robust and reliable since EZMultiPli typically is a key repeater in the Z-Wave mesh network. Never worry about the batteries dying since EZMultiPli is wall powered. Installed by anyone with just a screwdriver – no wires, no batteries, no damage to the walls drilling holes.

SmartStart

qrPackSigma Designs SmartStart technology makes installation easy and secure. If your home automation system supports SmartStart, the first step is to scan the QR code on the back of EZMultiPli. If EZMultiPli was purchased as part of a kit containing several SmartStart devices, the QR code may have already been scanned at the factory. The next step is to simply plug EZMultiPli into a wall outlet and it will automatically join the Z-Wave network. Inclusion should begin within a couple of minutes but may take longer if several SmartStart devices are added at the same time. SmartStart uses the latest Security S2 encryption technology for all radio communication ensuring your system is secure.

Express Controls

Express Controls provides expert consulting services for the design and manufacture of wireless Internet of Things (IoT) products for Z-Wave product development teams. Express Controls has been been developing IoT products using Z-Wave protocol since 2003 and the 100 series Z-Wave RF transceivers.  Currently we are developing Z-Wave products using the latest Sigma Designs fifth generation 500 series RF modules which enable us to quickly prototype any IoT device you can imagine.  We have resources available for PCB design and layout as well as industrial design and 3D printing to help visualize the entire IoT product quickly.   Leverage our knowledge of the nuances of the Z-Wave protocol to bring your Z-Wave product to market quickly.  

Contact

Eric Ryherd – CEO and Z-Wave Expert Consultant

info@expresscontrols.com – +1 (603) 889-4841 – ExpressControls.com

ZWP500 Z-Wave Module Programmer and Tester

Merrimack, NH February 26, 2018 – Express Controls LLC announces the release of the ZWP500 Z-Wave 500 series programmer and tester. The ZWP500 is specifically designed to efficiently program the 500 series Z-Wave modules and chips from Sigma Designs. “The ZWP500 is the first 500 series programmer with full support for printing of the SmartStart QRcode which is now required for all Z-Wave certified devices” said Z-Wave expert and Express Controls CEO Eric Ryherd.  Utilizing the popular and powerful Raspberry Pi single board computer means the full capabilities of a high performance processor and an open platform can be utilized for programming and testing Z-Wave based products. The feature rich Raspian Linux operating system means the ZWP500 can be programmed in any popular language such as C, C++ or Python. The system is an open platform easily customized by the user or the experts at Express Controls can quickly develop a solution that exactly meets the needs of your product.
ZWP500Photo

Features

 

  • Sigma Designs 500 Series FLASH Programmer
    • Standard Sigma 12 pin programming header
      • SPI interface for programming
      • UART interface for debug
    • NVR and external NVM programming & test
    • 1ppm Crystal RF Calibration
    • SmartStart QRCode generation & printingqrPack
    • Fanless protective enclosure
  • Production Test Platform
    • Customizable Python interface
    • Scanner interface for serial number or DSK
    • Label printer interface for SmartStart DSK
    • Camera interface for LCD screen testing
    • Z-Wave ZM5202 Module onboard
    • Programmable RF Attenuator with SMA
  • Python API
    • Customizable Programming API or GUI
    • Sample test scripts for production testing
  • Programmable Power Supply
    • +2.0V to +4.5V 300mA
  • Raspberry Pi based controller
    • 1.2GHz Quad ARM CPU running Linux
    • 1GB RAM – 8+GB FLASH microSD
    • Ethernet, WiFi, HDMI and USB connectivity
    • Control locally or remotely via VNC

Overview

The ZWP500 is a production programmer for Z-Wave 500 series wireless RF modules. The ZWP500 programs Z-Wave modules at their maximum programming speed bringing the typical programming time down under four seconds compared to nearly 30 seconds with competing products. RF calibration is performed using the high accuracy 1ppm on-board crystal. A fanless enclosure means the ZWP500 can be deployed on the factory floor without special packaging or custom enclosures. The ZWP500 is a complete, high speed, robust production platform that can be customized to meet your exact requirements. Customization services are available from the Express Controls team of experts.

In addition to being a fast production programmer, the ZWP500 is an ideal platform for testing Z-Wave devices. Product testing on the factory floor to ensure every device is free of manufacturing defects requires an accurate, fast and robust system. The ZWP500 utilizes the Linux based Raspberry Pi model 3 (RPi3) Quad Arm A7 processor which is then augmented with the precise timing generators of a Cypress PSoC microcontroller and the RF capabilities of the on-board Z-Wave module. A programmable power supply with current measurement capabilities enables rapid testing to ensure that the Device-Under-Test (DUT) is free from gross production failures like power to ground shorts or missing power components. Either Python or C programming languages can be used to develop a customized test program to fully verify every electronic component of the DUT. Express Controls can write the test program for you or your team can develop it using the sample code provided with the ZWP500 as a guide.

The ZWP500 can be used for software validation to verify there are no bugs in each release of firmware. The full power of high level programming languages like Python or C can be used to test every button press and Z-Wave command class with each firmware revision. Push buttons can be activated with millisecond precision. DACs can generate specific voltages or waveforms to trigger specific conditions. The power supply voltage can be varied to trigger low-battery conditions as well as measure current to ensure the DUT battery lifetime will meet your specification. LCD screens can be checked against reference images to verify every screen reacts properly to every button press. The power of the RPi3 is at your disposal using the most advanced programming languages to fully test every aspect of your product with every release.

Typical Programming & Test System

ZWP500SampleSystemA typical ZWP500 based system is shown here. A custom designed PCB utilizing spring loaded pogo posts is used to make contact with the Device Under Test (DUT). This board is then mounted in a 3D printed jig which clamps the DUT in place during programming and testing. A low-cost Zebra thermal printer is used to print the SmartStart QRCode at the same instant the DUT is programmed with the 32 byte encryption keys to ensure the proper QRCode is matched with the DUT.

Contact Express Controls for details and pricing.

Express Controls

Express Controls provides expert consulting services for the design and manufacture of wireless Internet of Things (IoT) products for Z-Wave product development teams. An early adopter, Express Controls has been been developing IoT products using Z-Wave protocol since 2003 and the early 100 series RF transceivers.  Currently we are developing Z-Wave products using the latest Sigma Designs fifth generation 500 series RF modules which enable us to quickly prototype whatever IoT device you can imagine.  We have resources available for PCB design and layout as well as industrial design and 3D printing to help visualize the entire IoT product quickly.   With well over a decade of experience learning the nuances of the Z-Wave protocol, we are here to help you get your Z-Wave product to market quickly as well as provide expertise for a variety of other IoT and/or Z-Wave challenges you may be experiencing!

Contact

Eric Ryherd – CEO and Z-Wave Expert Consultant

info@expresscontrols.com – +1 (603) 889-4841 – ExpressControls.com

CES 2018

The Consumer Electronics Show in Las Vegas is THE trade show for smart home technology and all things cool and new and geeky. It’s a massive show and I only spent one day there and never made it out of the Sands convention center which is one of the smaller venues. If you’ve never been to CES it is something to see. The crowds are enormous and the tech is brand new. So new, some of it will never actually make it to market as there is plenty of smoke and mirrors.

Eric Ryherd wireless IoT consultant expert

My purpose is obviously to seek out the latest news about Z-Wave and chat with my clients. The Z-Wave Alliance invited me to man the “Ask the Expert” desk at the show for a few hours which I was happy to do. My expert knowledge of Z-Wave answered simple questions like “what’s Z-Wave?” (It’s like wifi but low power) to complex questions about the rules around Security S2 and SmartStart.

The most common question is always what’s the difference between Z-Wave and Zigbee? My short answer is that Zigbee is like silos. If you can develop an app, gateway and all the devices you need, then Zigbee will work OK. Z-Wave however was a mesh network from day one and every Z-Wave device can talk to every other Z-Wave device regardless of the manufacturer. Z-Wave is built around standardized command classes so every hub knows precisely what format a temperature sensor is sending the data. Is it in celcius or Fahrenheit? Tenths of a degree or hundredths? With Z-Wave, the format is fully specified. The other protocols let you decide the format which is fine if you have the huge budget to do it all. But if your investors have you on a shoestring budget then Z-Wave is the way to go. I have much longer answers to the Z-Wave vs. Zigbee question but much too long to keep your interest in a quick blog post.

The big announcement for Sigma (other than the acquisition by Silicon Labs) is the announcement of the 700 series. Unfortunately details remain shrouded in secrecy but Sigma has put a stake in the ground of having developers kits by summer 2018. Finally having a real 32 bit ARM processor will be a huge productivity improvement for us IoT developers.

I had limited time to walk the floor but it does seem that smart home has finally taken off. There are so many companies making cool gizmos it’s overwhelming. From sun tracking solar powered umbrellas to cameras of every size and resolution to lots of new hubs there is no way one person can take it all in. You’ll just have to see for yourself.

The Z-Wave Alliance booth is even bigger this year filled with companies hawking the latest IoT thingamagiggy using Z-Wave. Every one of them able to talk to all the other Z-Wave doodads. The booth was busy all day long. I did wander past the tiny Zigbee booth buried in the back of the hotel with a few people in it but nothing like Z-Wave.

SiLabs acquires Z-Wave – Good or Bad?

On Friday of last week Silicon Labs signed an agreement to purchase Sigma Designs for $282M.

The question is: is this good for Z-Wave or bad? 

logoSilicon Labs is a well respected semiconductor manufacturer with an array of microcontroller products  from 8-bit 8051s thru modern low-power ARM CPUs. Silicon Labs has been chasing the IoT market since before IoT was a “thing”. Their low power micros have industry leading features often integrating the latest connectivity solutions like USB, Zigbee and now Z-Wave.  With a market cap of nearly $4B, Silicon Labs (SLAB) has a lot more financial muscle than Sigmas (SIGM) mere $265M could provide. All Z-Wave licensees should rejoice that a much larger company is now  supporting Z-Wave with the accompanying increase (we hope) of resources.

sigma-logoIn my opinion, the most interesting part of the announcement is that SiLabs is buying Z-Wave and not Sigmas primary business of Set-Top-Box processors. The announcement states: “Sigma Designs is in active discussions with prospective buyers to divest its Media Connectivity business”.  The announcement goes on to say that if Sigma can’t unload its “Media Connectivity business” then SiLabs will buy just the Z-Wave portfolio for $240M thus making the rest of Sigma worth only $42M assuming someone is willing to pay that much for it.

The Past

logo_zensyszwaveZ-Wave was originally invented by Zensys based in Copenhagen Denmark in 1999. Originally the Z-Wave protocol used Chipcon radios (acquired by TI) and Atmel processors (acquired by Microchip). In 2003 Zensys announced its own custom designed “100 series” Z-Wave transceiver which was a complete Z-Wave capable IoT System-On-Chip. In 2008 Zensys was struggling financially.  Fortunately Sigma stepped in an purchased Zensys for an “undisclosed amount”. Nine years later, Sigma has sold Z-Wave for a very nice ROI of perhaps 100X. Mergers and acquisitions in the semiconductor industry are frequent as technology and markets shift in unforeseen ways.

The Present

Z-Wave is growing like crazy as the number of 100% inter-operable mesh networked Z-Wave devices on the market continues to increase. There are now over 600 Z-Wave licensees with over 2100 products already on the market. With the recent addition of the AES-128 encrypted Security S2 communication and SmartStart to simplify the building of the Z-Wave network, Z-Wave shows it is continuing to evolve while still being completely backwards compatible with all the existing devices all the way back to the 100 series.

The Future

The future is nearly impossible to predict. I certainly don’t claim to have a clearer crystal ball than the next guy. But this acquisition bodes well for the future of Z-Wave. The additional resources should accelerate the introduction of the ARM Z-Wave microcontrollers which in turn will bring more Z-Wave products to market faster and cheaper. The soon to be announced next generation transceivers are expected to utilize modern ARM processors and make a significant leap forward in debug capabilities that are not present in the current 8051 8-bit CPUs. Z-Wave developers will finally be able to single step through their code instead of relying on printf to output a few cryptic characters giving you meager clues where your code has gone wonky.

Conclusion

The acquisition of the Z-Wave portfolio by a financially strong IoT silicon manufacturer is a “good thing” for the future of Z-Wave.

How to make a Z-Wave SUPER Sniffer

In this posting I’ll show how I made not just a Z-Wave packet sniffer but a SUPER Z-Wave packet sniffer that is able to receive many Z-Wave frames that a mere average sniffer cannot.

If you are a Z-Wave developer there is a packet sniffer tool available with the Z-Wave development kit called the “Zniffer” that is similar to the popular WireShark network sniffer. Unfortunately for the average Z-Wave user, the tool is only available to developers which requires the purchase of a DevKit and signing the applicable NDA documents. The Zniffer software is available on the Sigma Technical Support Site (ZTS) which requires an account approved by Sigma so you have to prove you are a developer. The Zniffer is invaluable for developing with Z-Wave because it decodes and can decrypt the encrypted frames traveling over the radio. The Zniffer is able to capture every routing attempt and every acknowledge as well as FLiRS beams and even collisions on the radio. This is way more information than you can get via the SerialAPI and is the only way to diagnose many problems you will encounter while developing a Z-Wave based product.

How to make a Super Zniffer

You can’t buy a Zniffer. UZBYou have to make one out of a UZB which is a simple USB stick that provides a COM port that talks to a PC over USB. The ZTS site explains how to convert a UZB into a Zniffer which isn’t easy to do and every time I do it I seem to have about a 1 in 5 chance that I permanently brick the UZB and have to just throw it away (fortunately they are only $25). Once you have the Zniffer firmware loaded into the UZB, use the Zniffer software and make sure it’s working. The UZB works well however it has a tiny helical antenna which means it is limited in its ability to capture all the traffic over the radio. The key to making a Super Zniffer is to tear out the little helical antenna and replace it with a full 1/4 wave antenna.

Solder on an SMA connector

ZnifferThe first step is to pry open the UZB enclosure. Use a small flat head screwdriver to pry it open along the USB connector. There are pins that hold the two halves together. Be careful not to break off the pins as we’ll use the enclosure with the Zuper Zniffer.

SuperZnifferNext unroll the helical antenna and cut it off so it just reaches the end of the PCB. Place the SMA connector on the end of the PCB and solder the antenna wire to the center pin of the SMA as shown above. You can solder the ground pin of the SMA to the PCB ground but it doesn’t seem to make much of a difference. Cut the enclosure to make room for the SMA connector to stick out the end and then snap it back on. Then screw on any SMA antenna and try it out. I typically get 3 to 5 more dB as reported in the Zniffer software RSSI column. This should be nearly 10X more range. There are so many antennas to choose from once you have an SMA connector so experiment and find one that works for you. You can even use a Yagi antenna which would then make the Zniffer highly directional.

Comparing the Zniffer to the Super Zniffer

A regular Zniffer and even the Super Zniffer won’t capture EVERYTHING traveling over the radio waves. That is just the nature of RF. When analyzing the trace in the Zniffer you have to remember that you might be missing frames that your target can see AND that even though you can see a frame it is possible the target didn’t see it. Thus, analyzing the Zniffer trace takes some getting used to.

Here is a typical Zniffer trace:

ZNif1

And this is the Super Zniffer trace of the same time when both Zniffers are right next to each other. Compare line 2084 above (the 2nd red CRC ERROR line) and line 2113 below.

SuperZnif2

Notice the yellow highlighted line on the Super Zniffer trace. If you compare this line with the one from the normal Zniffer you see the normal Zniffer only recorded this frame as a CRC error and was not able to capture it correctly. Also note that the RSSI is only 56 compared to 64 for the Zniffer indicating the antenna is providing about 8dB more signal strength than the tiny helical antenna of the normal Zniffer. The improved reception of the Super Zniffer makes debugging Z-Wave problems much easier as you aren’t having to sort thru as many questionable frames.