Tag Archives: Mesh

Z-Wave Challenges in MDUs and How to Resolve Them

Deploying a robust Z-Wave network in MDUs (like apartment buildings or hotels) can be challenging unless you follow a few basic rules.
The most common problem in MDU deployment is that many installers fail to take advantage of Z-Wave’s number one technical advantage – the mesh network. Every always-on (wall powered) Z-Wave device adds a node to the mesh. But battery powered devices like door locks, sensors and many thermostats do NOT add nodes to the mesh – they merely benefit from other devices on the mesh network. A system where there is one Z-Wave hub and a door lock in each dwelling unit will result in a poorly performing system because there is no mesh! To build a reliable mesh, every device in the network needs at least two routes between the hub and every device on the network. This means you need at least one Z-Wave repeater or lamp module in every network.
An MDU can easily have dozens or even hundreds of units all within Z-Wave range of each other. If each unit has just a single Z-Wave hub and a door lock, then each unit causes interference with every other unit resulting in a cacophony of Z-Wave traffic. A better solution is to have one hub serve 5 or even 10 units with each unit having at least one always-on device within it to provide a good “mesh” node to access the battery powered devices. Always-on devices in adjacent units help provide routing pathways to improve the robustness of the network. The installer needs the proper tools to evaluate the best location for these always-on devices to ensure a high-quality mesh network with plenty of alternate routes.
Another challenge in MDUs is that things are always changing. An owner might install a mirror (which is a metal plate on glass) or a metal appliance that significantly alters the Z-Wave quality within the unit. Even though the mirror or appliance is not in between the hub and the door lock does not mean that it won’t cause connectivity problems. The solution to this issue lies again with the mesh network and having alternate routes. Since things are always changing, the hub needs to have a policy to “heal” the network occasionally to adjust to the changes in the environment.
If some door locks seem to have short battery life then you might be suffering from limitations in older, pre-500 series Z-Wave devices. Early generations of Z-Wave would wake up battery powered devices like door locks using only their NodeID to request which node to wake up. This works fine in single family homes since every node on the network has a different NodeID, but in an MDU with multiple adjacent Z-Wave networks, if the door lock in each unit is NodeID=2, then every hub will wake up every door lock in the building any time a unit needs to check on the battery level of any door lock. The solution is to ensure each adjacent installation has a different NodeID for door locks or battery powered nodes. Thus, apartment 101 will have the door lock as NodeID=02, apartment 102 will have the door lock as NodeID=03, and so on. The latest generation of Z-Wave solves this problem so as these newer locks come on the market this issue will disappear.

A few quick rules for deploying Z-Wave in MDUs:

  1. Always build a Z-Wave mesh
  2. Install fewer hubs
  3. Use tools like IMA to validate mesh networks
  4. Don’t build the same network in every unit
  5. Network must be flexible due to changing environments